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SUMMARY

This article discusses the application of a Lagrange multiplier-based fictitious domain method to the
numerical simulation of incompressible viscous flow modeled by the Navier–Stokes equations around
moving rigid bodies; the rigid body motions are due to hydrodynamical forces and gravity. The solution
method combines finite element approximations, time discretization by operator splitting and conjugate
gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming
from the splitting method. The study concludes with the presentation of numerical results concerning
four test problems, namely the simulation of an incompressible viscous flow around a NACA0012 airfoil
with a fixed center but free to rotate, then the sedimentation of 200 and 1008 cylinders in a
two-dimensional channel, and finally the sedimentation of two spherical balls in a rectangular cylinder.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fictitious domain methods is a general term that covers in fact a large variety of solution
methods for partial differential equations. Glowinski et al. [1–3] discussed fictitious domain
methods based on boundary supported Lagrange multipliers to enforce Dirichlet boundary
conditions and on regular structured meshes (which are not boundary fitted) over a simple
shape auxiliary domain (the fictitious domain). These methods, initially developed for the
solution of linear elliptic problems, have also been applied, as shown in the above references,
to the solution of non-linear time-dependent problems, such as the variational inequalities
modeling the flow of a viscous–plastic medium in a pipe, the Ginzburg–Landau equations,
and the Navier–Stokes equations modeling incompressible viscous unsteady flow. For the
simulation of flow around moving rigid bodies, where the motion is known, Glowinski et al.
[4–6] have coupled a time discretization by operator splitting à la Marchuk–Yanenko with an
L2-projection technique that forces the incompressibility condition; the resulting method is
robust, stable and easy to implement.
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In this study the numerical simulation of incompressible viscous flow around moving rigid
bodies when the rigid body motions are caused by hydrodynamical forces and gravity are
considered; several applications can be mentioned, for example, fluidized beds, sedimentation,
and blood flow around artificial heart valves. The method of choice is a distributed Lagrange
multiplier/fictitious domain method that consists of filling the moving bodies by the surrounding
fluid and impose rigid body motions to the fluid occupying the regions originally occupied by
the rigid bodies; then the rigid body motion constraint is relaxed by using distributed Lagrange
multipliers and a flow problem over the entire region is obtained. This approach is quite
different from the one in References [4–6], which is concerned with the case where the rigid
body motion is known. The advantage of fictitious domain methods is that there is no need to
generate a new mesh at each time step, immediately after finding the new position of the rigid
bodies. This is a very important issue since for three-dimensional particulate flow, generating
moving meshes for simulating fluid–rigid body interactions is a highly non-trivial problem;
this problem has been successfully addressed in, for example, [7], using a sophisticated
methodology. The fictitious domain method described in this article provides an alternative
where flow computations are performed on a fixed grid, while rigid body motion is taken care
of via a simple mesh that can be generated very quickly. Also (this is not specific to fictitious
domain methods, see for example [8]), there is no need to compute the hydrodynamical forces
explicitly, since the interaction between fluid and rigid bodies is implicitly contained in the
variational formulation at the foundation of the present methodology. This approach has been
applied to simulate the flow around an NACA0012 airfoil that has a fixed center, but that is
free to rotate due to hydrodynamical forces, and the motion of sedimenting rigid bodies in
two- and three-dimensional channels and to capture the hydrodynamic interactions with the
rigid bodies.

It should be mentioned that non-Lagrange multiplier-based fictitious domain methods have
been used by Peskin and his collaborators [9–11] to simulate incompressible viscous flow in
regions with elastic moving boundaries, and by LeVeque [12,13] for elliptic problems with
discontinuous coefficients and singular sources and Stokes flow with elastic boundaries or
surface tension.

2. A MODEL PROBLEM AND ITS FICTITIOUS DOMAIN FORMULATION

Let B(t)=Ui=1
I Bi(t), where Bi(t) is the ith moving rigid body in the fluid and V¦Rd (d=2, 3;

see Figure 1 for a particular case where d=2). We consider for t\0 the solution of the
Na6ier–Stokes equations

rf
�(u
(t

+ (u ·9)u
�

=rfg+9 ·s in V¯B(t), (1)

9 ·u=0 in V¯B(t), (2)

u(x, 0)=u0(x), x�V¯B(0) (with 9 ·u0=0), (3)

u=g0 on G, (4)

to be completed by boundary conditions on (B(t), given hereafter (see relation (8)). In (1)–(4)
s= −pI+nf(9u+ (9u)T) is the stress sensor, u (={ui}i=1

d ) and p denote, as usual, velocity
and pressure respectively; rf is the density of the fluid, nf (\0) is the fluid viscosity, g is the
gravity, x the generic point of Rd (x={xi}i=1

d ), B(t) the closure of the region occupied by B(t),
G=(V, and
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(u ·9)u=
! %

j=d

j=1

uj

(ui

(xj

"
i=1

i=d

.

From the rigid body motion of the rigid bodies, g0 has to satisfy 	G g0 ·n dG=0, where n is the
outer normal unit vector at G (we suppose the no-slip condition on the boundary of each rigid
body). In the following, we shall use, if necessary, the notation f(t) for the function
x�f(x, t).

For simplicity, we consider two-dimensional cases only (we can easily extend the following
approach to three-dimensional cases). Assuming that the rigid bodies do not touch each other
or the wall, we have from Newton’s law, for the ith rigid body

Mp,i

dVp,i

dt
=Mp,ig+Fp,i, (5)

Ip,i

dvp,i

dt
=Tp,i, (6)

dGp,i

dt
=Vp,i, (7)

where Vp,i is the translation velocity of the rigid body, vp,i is the angular velocity of the rigid
body, Mp,i is the mass of the rigid body, Ip,i is the moment of inertia of the rigid body at Gp,i,
Gp,i being the center of mass of the rigid body; g is the gravity, Fp,i is the force imposed on the
rigid body by the fluid, Tp,i is the moment imposed on the rigid body by the fluid. The
boundary condition on the boundary Gp,i(t) of the ith rigid body is

u=Vp,i+vp,i× (x−Gp,i), for x�Gp,i(t). (8)

The force and moment imposed on the rigid body by the fluid are described as follows:

Fp,i=
&

Gp,i(t)

sn dg, (9)

Tp,i=
&

Gp,i(t)

(x−Gp,i)× (sn) dg, (10)

Figure 1. An example of two-dimensional flow region and rigid bodies.
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where x is the generic point of R2 and n is the pointing outward unit normal vector on Gp,i(t).
In order to treat possible collisions either between rigid bodies or between rigid body and wall
(or to avoid penetration either between rigid bodies or between rigid body and wall), which is
a new problem posed by the direct simulation of fluidized suspensions, we shall substitute to
the momentum equation in (5) the following one:

Mp,i

dVp,i

dt
=Mp,ig+Fp,i+Fp,i

r , (11)

where Fp,i
r is a lubrication force [14,15] imposed on the ith rigid body by the other rigid bodies

and the walls.
For simplicity, we shall consider up to Section 5 the one rigid body case only. To obtain a

variational formulation for problem (1)–(6), we define the following spaces:

Vg0(t)={v�v�H1(V¯B(t))2, v=g0(t) on G, v=Vp(t)+vp(t)× (x−Gp) on Gp(t)}, (12)

V0={v�v�H1(B(t))2, v=0 on G, v=Y+u× (x−Gp) on Gp(t), Y�R2, u�R}, (13)

L0
2(V¯B(t))=

!
q �q�L2(V¯B(t)),

&
V¯B(t)

q dx=0
"

. (14)

It can be shown that the variational formulation of problem (1)–(6) is (if we include the
collision forces)

For a.e. t\0, find u(t)�Vg0(t), p(t)�L0
2(V¯B(t)), (Vp(t), vp(t))�R3, such that

rf
&

V¯B(t)

(u
(t

·v dx+rf
&

V¯B(t)

(u ·9)u ·v dx−
&

V¯B(t)

p9 ·v dx+2nf
&

V¯B(t)

D(u) : D(v) dx

+Y ·
�

Mp

dVp

dt
−Mpg

�
+uIp

dvp

dt
−Fp

r ·Y=
&

V¯B(t)

rfg ·v dx, Öv�V0, Y�R2, u�R, (15)

&
V¯B(t)

q9 ·u(t) dx=0, Öq�L2(V¯B(t)), (16)

u(x, 0)=u0(x), x�V¯B(0) (with 9 ·u0=0), (17)

Vp(0)=Vp
0, vp(0)=vp

0, (18)

where D(v)= (9v+ (9v)T)/2, Gp(t)=Gp
0 +	t

0 Vp(s) ds, Vp
0 (respectively vp

0) are the initial
velocity (respectively the initial angular velocity) of the rigid body B(t) and Gp

0 is the initial
center position of the rigid body. To the best of our knowledge, this variational formulation,
Equations (15)–(18), was introduced by Hesla [16]. Hu [8] also developed a similar variational
formulation and combined it with an arbitrary Lagrange–Euler (ALE) technique. Hu has
successfully simulated two-dimensional solid–liquid mixtures in a vertical channel with un-
structured grids.

Now we fill the moving rigid body B(t) by the surrounding fluid (imbed V¯B(t) in V) and
impose the rigid body motion to the fluid in the region originally occupied by the moving
body. Then we relax the rigid body motion constraint by using distributed Lagrange multipli-
ers and obtain a fictitious domain formulation over the entire region. Let us define the
following spaces

Wg0(t)={v�v�H1(V)2, v=g0(t) on G}, W0=H0
1(V)2, (19)
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L0
2(V)=

!
q �q�L2(V),

&
V

q dx=0
"

, (20)

L(t)=H1(B(t))2. (21)

To enforce the rigid body motion we can use, for example, the scalar product � · , ·�B(t) defined
as follows:

�m, v�B(t)=
&

B(t)

(m ·v+9m : 9v) dx, Öm�H1(B(t))2, Öv�H1(V)2. (22)

The corresponding fictitious domain formulation of problem (15)–(18) is then
For a.e. t\0, find U(t)�Wg0(t), P(t)�L0

2(V), l(t)�L(t), (Vp(t), vp(t))�R3, such that

rf
&

V

(U
(t

·v dx+rf
&

V
(U ·9)U ·v dx−

&
V

P9 ·v dx+2nf
&

V
D(U) : D(v) dx

+
�

1−
rf

rs

�
Mp

dVp

dt
·Y+

�
1−

rf

rs

�
Ip

dvp

dt
u−

�
1−

rf

rs

�
Mpg ·Y−Fp

r ·Y

−�l, v−Y−u× (x−Gp)�B(t)=
&

V
rfg ·v dx, Öv�W0, Y�R2, u�R, (23)&

V
q9 ·U(t) dx=0, Öq�L2(V), (24)

�m, U(t)−Vp(t)−vp(t)× (x−Gp(t))�B(t)=0, Öm�L(t), (25)

U(x, 0)=U0(x), x�V (with 9 ·U0=0), (26)

Vp(0)=Vp
0, vp(0)=vp

0, (27)

where U0 is an extension of u0 such that 9 ·U0=0. Here we have U�V¯B(t)=u and P�V¯B(t)=p.
The above formulation is due to the first two authors. In Equation (23), we can include the
gravity term on the right-hand-side into the pressure term on the left-hand-side, as shall be
done in the following sections.

Remark 2.1
Since in Equation (23) U is (obviously) divergence-free and satisfies the Dirichlet boundary
conditions on G, we have

2
&

V
D(U) : D(v) dx=

&
V

9U : 9v dx, Öv�W0.

A substantial simplification, indeed, from a computational point of 6iew, which is another plus
for the fictitious domain approach used here. This simplification has been taken into account
in the remaining parts of this article.

Remark 2.2
For dimensionality reasons, a H1-scalar product more physical than the one defined by (22) is
given by

�m, v�B(t)=
&

B(t)

(m ·v+a9m : 9v) dx,

where a is a scaling factor ; an obvious choice for a is to take it equal to d2, where d is the
diameter of the rigid body, which is clearly the most important characteristic length in the
problem. Another natural H1-scalar product, well-suited to rigid body motions, is
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�m, v�B(t)=
&

B(t)

(m ·v+2aD(m) : D(v)) dx.

3. FINITE ELEMENT APPROXIMATIONS

We still assume that V¦R2. With h a space discretization step we introduce a finite element
triangulation Th of V( and then T2h a triangulation twice coarser (in practice we should
construct T2h first and then Th by joining the midpoints of the edges of T2h, then dividing
each triangle of T2h into four similar subtriangles). We define the following finite-dimensional
spaces that approximate Wg0(t), W0, L2(V), L0

2 (V) respectively

Wg0h
={vh �vh�C0(V( )2, vh �T�P1×P1, ÖT�Th, vh �G=g0h}, (28)

W0h={vh �vh�C0(V( )2, vh �T�P1×P1, ÖT�Th, vh �G=0}, (29)

Lh
2={qh �qh�C0(V( ), qh �T�P1, ÖT�T2h}, L0h

2 =
!

qh �qh�Lh
2,
&

V
qh dx=0

"
(30)

in (28)–(30), g0h is an approximation of g0 satisfying 	G g0h ·n dG=0 and P1 is the space of the
polynomials in two variables of degree 51.

Let Bh(t) be a polygonal domain inscribed in B(t) and TBh(t) be a finite element triangula-
tion of Bh(t). Then a finite-dimensional space approximating L(t) is

Lh(t)={mh �mh�C0(Bh(t))2, mh �T�P1×P1, ÖT�TBh(t)}. (31)

An alternative to Lh(t) defined by (31) is as follows: let {xi}i=1
nd be a set of points from B(t)

that covers B(t) uniformly; we define then

Lh(t)=
!

mh
)
mh= %

nd

i=1

mid(x−xi), mi�R2 for i=1, . . . , nd
"

, (32)

where d( ·) is the Dirac measure at x=0. Then, instead of the scalar product of (H1(Bh(t)))2

we shall use � · , ·�Bh(t) defined by

�mh, vh�Bh(t)= %
nd

i=1

mi ·vh(xi), Ömh�Lh(t), vh�Wg0h
or W0h. (33)

Using the ‘scalar product’ defined by (33) implies that the rigid body motion of B(t) is forced
via a collocation method. A similar technique has been used to enforce the Dirichlet boundary
conditions by Bertrand et al. [17] (other approaches are possible and will be investigated in the
future).

Using those finite-dimensional spaces leads to the following approximation of problem
(23)–(27):

rf
&

V

(Uh

(t
·v dx+rf

&
V

(Uh ·9)Uh ·v dx−
&

V
Ph9 ·v dx+nf

&
V

9Uh : 9v dx

+
�

1−
rf

rs

�
Mp

dVp

dt
·Y+

�
1−

rf

rs

�
Ip

dvp

dt
u−

�
1−

rf

rs

�
Mpg ·Y−Fp

r ·Y

−�lh, v−Y−u× (x−Gp)�Bh(t)=0, Öv�W0h, Y�R2, u�R, (34)&
V

q9 ·Uh(t) dx=0, Öq�Lh
2, (35)
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�m, Uh(t)−Vp(t)−vp(t)× (x−Gp(t))�Bh(t)=0, Öm�Lh(t), (36)

Uh(0)=U0h, x�V, Vp(0)=Vp
0, vp(0)=vp

0, (37)

{Uh(t), Ph(t), lh(t), Vp, vp}�Wg0(t)h×L0h
2 ×Lh(t)×R3; (38)

in (37), U0h is an approximation of U0 so that 	V q9 ·U0h dx=0 for all q�Lh
2.

Remark 3.1
We replaced, in relation (34), 2 	V D(U) : D(v) dx by 	V 9U : 9v dx by taking remark 2.1 into
account.

Remark 3.2
Formulation (34)–(38) involves two Lagrange multipliers, namely Ph, associated with the
discrete incompressible constraint (35), and lh, associated with the discrete rigid body motion
condition (36). Variational formulations such as (34)–(38) (and (23)–(27)) are known as mixed
variational formulations. The approximation of mixed variational problems is discussed in
detail in Brezzi and Fortin [18] and Roberts and Thomas [19]. In order to explain the issues
at stake to the unfamiliar reader, consider the following simple mixed variational problem

Í
Á

Ä

a(u, 6)+b(l, 6)=L(6), Ö6�V,
b(m, u)=0, Öm�L,
{u, l}�V×L,

(MVP)

where in (MVP):

� V and L are two real Hilbert spaces;
� a : V�R is bilinear and continuous;
� b : L×V�R is bilinear and continuous;
� L : V�R is linear and continuous.

Suppose that (MVP) has a unique solution (sufficient conditions for that are given in
References [18,19]). In order to approximate (MVP) we introduce families {Vh}h and {Lh}h of
subspaces of V and L respectively; h being a parameter so that h�0. We suppose that the
following convergence property holds

Ö{6, m}�V×L, there exists a family {{6h, mh}}h so that {6h, mh}�Vh×Lh, Öh

and lim
h�0

(6−6hV+m−mhL)=0. (CP)

It make sense then to approximate (MVP) by

Í
Á

Ä

a(uh, 6h)+b(lh, 6h)=L(6h), Ö6h�Vh,
b(mh, uh)=0, Ömh�Lh,
{uh, lh}�Vh×Lh.

(MVP)h

Suppose that problem (MVP)h has a unique solution for all h. It is well known that in general
we do not have

lim
h�0

{uh, lh}={u, l}

unless there exist compatibility conditions between {Vh}h and {Lh}h implying the stability and
convergence of the family {{uh, lh}}h of approximate solutions (such conditions are discussed

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1043–1066 (1999)
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in [18,19] for important classes of mixed variational problems originating from continuum
mechanics). Similar conditions hold for problems (23)–(27) and (34)–(38). It has been shown,
in particular by Girault and Glowinski (work in progress), that a Ladyzhenskaya–Babuska–
Brezzi (LBB) condition implying stability and convergence is satisfied if the velocity and
pressure spaces are defined by (28)–(30) and if (in the case of flow regions with fixed
boundary) hB#2hV, where, as easily guessed, hB is the size of the mesh used to approximate
L, and hV is the size of the velocity grid. Actually, the above condition can be relaxed and we
still observe stability and convergence if one takes hB#khV, with 1Bk52. Other approaches
are possible in obtaining stability and convergence, like for example, those approaches based
on regularization, described in [18] (see also the references therein).

4. TIME DISCRETIZATION BY OPERATOR SPLITTING

Following Chorin [20–22], most ‘modern’ Navier–Stokes solvers are based on operator
splitting algorithms [23,24] in order to force the incompressibility condition via a Stokes solver
or a L2-projection method (see also Gresho and Sani [25] for detailed information on
L2-projection methods). This approach still applies to the initial value problem (34)–(38),
which contains three numerical difficulties to each of which can be associated a specific
operator, namely

(a) The incompressibility condition and the related unknown pressure.
(b) An advection–diffusion term.
(c) The rigid body motion of Bh(t) and the related multiplier lh(t).

The operators in (a) and (c) are essentially projection operators. From an abstract point of
view, problem (34)–(38) is a particular case of the following class of initial value problems:

df

dt
+A1(f)+A2+A3(f)= f, f(0)=f0, (39)

where the operators Ai can be multivalued. Among the many operator splitting methods that
can be employed to solve (39), we advocate the very simple one [26] below; it is only
first-order-accurate but its low-order accuracy is compensated by good stability and robustness
properties.

4.1. A fractional step scheme à la Marchuk–Yanenko

With Dt a time discretization step and the initial guess f0=f0, this scheme is defined as
follows:

for n]0, we obtain fn+1 from fn via the solution of

(fn+ j/3−fn+ ( j−1)/3)/Dt+Aj(fn+ j/3)= f j
n+1, (40)

with j=1, 2, 3 and �j=1
3 f j

n+1= f n+1. Applying scheme (40) to problem (34)–(38) we obtain
(with 05a, b51, a+b=1 and after dropping some of the subscripts h)

U0=U0h ; Vp
0, vp

0 and Gp
0 are given; (41)

for n]0, knowing Un, Vp
n, vp

n, Gp
n, we compute Un+1/3, Pn+1/3 via the solution of

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1043–1066 (1999)
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Í
Ã

Ã

Á

Ä

r f
&

V

Un+1/3−Un

Dt
·v dx−

&
V

Pn+1/39 ·v dx=0, Öv�W0h,&
V

q9 ·Un+1/3 dx=0, Öq�Lh
2; Un+1/3�Wg0h

n+1, Pn+1/3�L0h
2 .

(42)

Then we compute Un+2/3 via the solution of

rf
&

V

Un+2/3−Un+1/3

Dt
·v dx+anf

&
V

9Un+2/3 : 9v dx+rf
&

V
(Un+1/3 ·9)Un+2/3 ·v dx=0,

Öv�W0h ; Un+2/3�Wg0h

n+1, (43)

and then compute Vp
n+2/3 and Gp

n+2/3 via:

Take Vp
n,0=Vp

n, Gp
n,0=Gp

n; then predict the new position and translation velocity of the rigid
body via the following subcycling technique

do k=1, N

V*pn,k=Vp
n,k−1+

�
g+

�
1−

rf

rs

�−1

Mp
−1Fr(Gp

n,k−1)
� Dt

N
, (44)

G*pn,k=Gp
n,k−1+ (V*pn,k+Vp

n,k−1)
Dt
2N

, (45)

Vp
n,k=Vp

n,k−1+g
Dt
N

+
�

1−
rf

rs

�−1

Mp
−1(Fr(G*pn,k)+Fr(Gp

n,k−1))
Dt
2N

, (46)

Gp
n,k=Gp

n,k−1+ (Vp
n,k+Vp

n,k−1)
Dt
2N

, (47)

enddo.

Set Vp
n+2/3=Vp

n,N, Gp
n+2/3=Gp

n,N.
Finally we compute Un+1, ln+1, Vp

n+1, vp
n+1 via the solution of

rf
&

V

Un+1−Un+2/3

Dt
·v dx+bnf

&
V

9Un+1 : 9v dx+
�

1−
rf

rs

�
Ip

vp
n+1−vp

n

Dt
u

+
�

1−
rf

rs

�
Mp

Vp
n+1−Vp

n+2/3

Dt
·Y

Í
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

=�ln+1, v−Y−u× (x−Gp
n+2/3)�Bh

n+2/3, Öv�W0h, Y�R2, u�R,

�m, Un+1−Vp
n+1−vp

n+1× (x−Gp
n+2/3)�Bh

n+2/3=0, Öm�Lh
n+2/3;

Un+1�Wg0h

n+1, ln+1�Lh
n+2/3, Vp

n+1�R2, vp
n+1�R;

(48)

then take Gp
n+1,0=Gp

n+2/3 and correct the position of the rigid body center as follows:

do k=1, N

G*pn+1,k=Gp
n+1,k−1+ (Vp

n +Vp
n+1)

Dt
2N

, (49)
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Gp
n+1,k=G*pn+1,k+

�
1−

rf

rs

�−1

Mp
−1(Fr(Gp

n+1,k−1)+Fr(G*pn+1,k))
(Dt)2

4N2 , (50)

enddo.

Set Gp
n+1=Gp

n+1,N.
In (41)–(50) we have Wg0h

n+1=Wg0((n+1)Dt)h, Lh
n+s=Lh((n+s)Dt) and Bh

n+s=Bh((n+s)Dt).
In (44)–(47) we predict the position of the rigid body center and use it in (48), then in (49) and
(50) we correct the prediction of the rigid body center position. With operator splitting, we can
use a smaller time step to predict and correct the position of the center of the rigid bodies
without changing the time step of algorithm (41)–(50). For our numerical simulations, we have
used a=1 and b=0 in (41)–(50) and N=10 in (44)–(47) and (49) and (50).

5. SOLUTION OF THE SUBPROBLEMS (42), (43) AND (48)

By inspection of (42) it is clear that Un+1/3 is the L2(V)2-projection of Un on the (affine) subset
of the functions v�Wg0h

n+1 such that 	V q9 ·v dx=0, Öq�Lh
2, where Pn+1/3 is the corresponding

Lagrange multiplier in L0h
2 . The pair {Un+1/3, Pn+1/3} is unique and to compute it we can use

an Uzawa/conjugate gradient algorithm operating in L0h
2 equipped with the scalar product

{q, q %}�	V 9q ·9q % dx. We obtain an algorithm [6] preconditioned by the discrete equivalent
of −D for the homogeneous Neumann boundary condition. Such an algorithm is very easy to
implement and seems to have excellent convergence properties.

If a\0, problem (43) is a classical one; it can be easily solved, for example, by a
least-squares/conjugate gradient algorithm [27].

The solution of problem (48) can be computed by algorithms similar to those described in
[1] for elliptic problems, with the additional difficulty that there are three more equations here,
namely the ones used to compute the translation velocity and angular speed of the rigid body.
Problem (48) has the following form:

Í
Ã

Ã

Ã

Ã

Á

Ä

a
&

V
u ·v dx+n

&
V

9u : 9v dx+
�

1−
rf

rs

�
Ip

vp−vp0

Dt
u+

�
1−

rf

rs

�
Mp

Vp−Vp0

Dt
·Y

=
&

V
f ·v dx+�l, v−Y−u× (x−Gp)�Bh

, Öv�W0h, Y�R2, u�R,

�m, u−Vp−vp× (x−Gp)�Bh
=0, Öm�Lh ; u�Wg0h

, l�Lh, Vp�R2, vp�R,

(51)

where the center Gp of rigid body Bh is known and Wg0h
=Wg0h

n . A conjugate gradient
algorithm for solving problem (51) is as follows:

Step 0: Initialization

l0�Lh is given; (52)

solve

a
&

V
u0 ·v dx+n

&
V

9u0 : 9v dx=
&

V
f ·v dx+�l0, v�Bh

, Öv�W0h ; u0�Wg0h
, (53)�

1−
rf

rs

�
Mp

Vp
0 −Vp0

Dt
·Y+�l0, Y�Bh

=0, ÖY�R2; Vp
0�R2, (54)
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�
1−

rf

rs

�
Ip

vp
0 −vp0

Dt
u+�l0, u× (x−Gp)�Bh

=0, Öu�R; vp
0�R, (55)

then

�m, g0�Bh
=�m, u0−Vp

0 −vp
0 × (x−Gp)�Bh

, Öm�Lh ; g0�Lh, (56)

and set

w0=g0. (57)

Then, for m]0, assuming that lm, um, Vp
m, vp

m, wm, gm are known, we obtain lm+1, um+1,
Vp

m+1, vp
m+1, wm+1, gm+1 by

Step 1: Descent
Solve

a
&

V
ūm ·v dx+n

&
V

9ūm : 9v dx=�wm, v�Bh
, Öv�W0h ; ūm�W0h, (58)

�
1−

rf

rs

� Mp

Dt
V( p

m ·Y+�wm, Y�Bh
=0, ÖY�R2; V( p

m�R2, (59)

�
1−

rf

rs

� Ip

Dt
v̄p

mu+�wm, u× (x−Gp)�Bh
=0, Öu�R; v̄p

m�R, (60)

and set

�m, ḡm�Bh
=�m, ūm−V( p

m−v̄p
m× (x−Gp)�Bh

, Öm�Lh ; ḡm�Lh. (61)

Then we compute

rm=�gm, gm�Bh
/�wm, ḡm�Bh

, (62)

and set

lm+1=lm−rmvm, (63)

um+1=um−rm ūm, (64)

Vp
m+1=Vp

m−rmV( p
m, (65)

vp
m+1=vp

m−rmv̄p
m, (66)

gm+1=gm−rm ḡm. (67)

Step 2: Testing the con6ergence and construction of the new descent direction
If �gm+1, gm+1�Bh

/�g0, g0�Bh
5o, then take u=um+1, Vp=Vp

m+1 and vp=vp
m+1. If not,

compute

gm=�gm+1, gm+1�Bh
/�gm, gm+1�Bh

, (68)

and set

wm+1=gm+1+gmwm. (69)

Do m=m+1 and go back to (58).
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6. NUMERICAL EXPERIMENTS

6.1. Flow around an NACA0012 airfoil that has a fixed center of mass and is free to rotate
due to hydrodynamical forces

Here we consider an incompressible viscous flow around an NACA0012 airfoil that has a
fixed center of mass and is free to rotate due to hydrodynamical forces; the surrounding region
V is the rectangle (−4, 16)× (−2, 2). The characteristic length, namely the airfoil length, is
1.009 and the fixed center of mass of the NACA0012 airfoil is at (0.42, 0). Initial angular
velocity and incident angle are zero. The density of the fluid is rf=1.0 and the density of the
airfoil is rs=1.1. The viscosity of the fluid is nf=0.01. The initial condition for the fluid flow
is u0=0 and the boundary data g0 is given by

g0(x, t)=Í
Á

Ä

0

(1−e−50t)
�1

0
� if x2= −2 or 2,

if x1= −4 or 16,

for t]0. Hence, the Reynolds number is about 101 with respect to the characteristic length of
the NACA0012 airfoil and the maximal inflow speed. In this case we have chosen two sets of
time step and mesh size to validate the simulation results. In the first set, the time step is
Dt=0.0015 and the mesh size for the velocity field is hv=1/64 (there are 329217 nodes). In the
second set, the time step is Dt=0.001 and the mesh size for the velocity field is hv=1/96 (there
are 739585 nodes). The mesh size for pressure is always hp=2hv.

To enforce the rigid body motion inside the airfoil at each time step, using the discrete
multiplier space defined in (32), we have taken all the grid points from the velocity grid
contained in the NACA0012 at that time completed by a selected set of points belonging to the
boundary of the airfoil (see Figure 2) and then used a scalar product over Lh(t), such as the
one defined by (33).

Figure 2. Part of the velocity mesh and example of mesh points used in (32) for enforcing the rigid body motion in
the NACA0012 airfoil.
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The NACA0012 airfoil is fixed up to t=1. A steady flow around it is obtained. After t=1,
we allow the NACA0012 airfoil to rotate freely. In Figure 3, we observe that the histories
corresponding to the two sets of time step and mesh size are in very good agreement. The
NACA0012 airfoil intends to keep its broadside perpendicular to the inflow direction, which
is a stable position for non-circular particles settling in a channel at small Reynolds number
[28].

In the second test case, we have used the same data and parameters with the exception of
the viscosity; we have taken nf=0.00125 (the Reynolds number is now about 807). The time
step is Dt=0.001 and the mesh size for the velocity is hv=1/96 which is required to catch the
velocity field close to the leading edge of the NACA0012 airfoil without losing stability (when
we used hv=1/64, the numerical solution blows up near the leading edge of the airfoil). In the
simulation, the number of iterations for the divergence-free projection problem (42) is 16, the
number of iterations for the linearized advection–diffusion problem (43) is two, and the one
for the rigid body motion projection varies from 65 to 238. The first two numbers of iterations
are almost independent of the mesh size; the last one is quite large and we are working to
reduce it via the use of a H1-scalar product, such as the ones defined in remark 2.2. The
histories of the angle and angular velocity of the NACA0012 airfoil are shown in Figure 4. The
NACA0012 airfoil is completely fixed without possible rotation up to t=2 (see Figure 5).
After t=2 we allow the NACA0012 airfoil to rotate freely. The flow fields and the vorticity
density at times t=7, 9, 11, 13, are shown in Plates 1 and 2. We observe then that the
NACA0012 airfoil oscillates from about −70° to 74°.

In the case of a Reynolds number of 101, a code of size 41 Mb takes about 53 s at each time
step on one node of an IBM SP2 for the coarse mesh (hv=1/64 and Dt=0.0015). For the fine
mesh (hv=1/96 and Dt=0.001), a code of size 93 Mb takes about 107 s at each time step on
one node of an IBM SP2.

Remark 6.1
For the test case discussed here, the fact that we used a uniform fine mesh may appear as a
drawback. Actually this test problem was considered for validation purpose and also to show

Figure 3. Histories of the angle (dashed–dotted line for hv=1/96 and dotted line for hv=1/64) and angular velocity
(solid line for hv=1/96 and dashed line for hv=1/64) of the NACA0012 airfoil at Re=101.
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Figure 4. Histories of the angle (dashed–dotted line) and angular velocity (solid line) of the NACA0012 airfoil at
Re=807.

Figure 5. Flow field around the NACA0012 airfoil at t=2.

that our methodology can handle non-circular bodies. Also when simulating the flow of
mixtures with over 100 particles highly dispersed in the flow region (see Figures 10 and 11),
which is the main goal of the distributed Lagrange multiplier method discussed here, using a
fine uniform mesh everywhere is not a drawback anymore (particularly for a flow where the
ratio of solid volume/fluid volume is of the order of one, or more).

Remark 6.2
For the above test problem, we have imposed u=0 on the top and bottom boundaries of V.
Actually, with the methodology discussed in this article, there would have been no problem
imposing u=u� ("0) on the inflow, top and bottom boundaries of V, and nf((u/(n)−np=0
(or sn=0) on the outflow boundary. We can justify the boundary conditions used here by the
fact that experimental results concerning the flow around cylinders are obtained by putting the
cylinders in channels where they are fixed or free to rotate, the boundary conditions on the
boundary of the channels being close to those used in the article.
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Plate 1. Flow field visualization (above) and density plot of the vorticity (below) around the NACA0012 airfoil at (a) t=7, (b) t=9.
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Plate 2. Flow field visualization (above) and density plot of the vorticity (below) around the NACA0012 airfoil at (a) t=11, (b) t=13.
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Remark 6.3
Using the parallelization techniques developed by Sameh and Sarin, the computational times
given above have been divided by factors of the order of 10; see [29] for details.

6.2. A 200 particles case

The second test problem that we consider concerns the simulation of the motion of 200
sedimenting cylinders in the closed channel V= (0, 6)× (0, 6). The diameter d of the cylinders
is 0.125 and the position of the cylinders at time t=0 is shown in Figure 6. The solid fraction
in this test case is 27.27%. Initial velocity and angular velocity of the cylinders are Vp,i

0 =
0, vp,i

0 =0 for i=1, . . . , 200. The density of the fluid is rf=1.0 and the density of the
cylinders is rs=1.01. The viscosity of the fluid is nf=0.01. The initial condition for the fluid
flow is u0=0 and g0(t)=0, Öt]0. In this test case, we also have chosen two sets of time step
and mesh size to validate the simulation results. In the first set, the time step is Dt=0.0015 and
the mesh size for the velocity field is hv=1/80 (there are 231361 nodes). In the second set, the
time step is Dt=0.001 and the mesh size for the velocity field is hv=1/120 (there are 519841
nodes). The mesh size for pressure is always hp=2hv.

The histories of the averaged vertical and horizontal translational cylinder velocities for
these two sets of time step and mesh size are shown in Figure 7. The histories of the averaged

Figure 6. Sedimentation of 200 circular particles: initial position of the cylinders.

Figure 7. Histories of the averaged vertical (left) and horizontal (right) translational velocities of the cylinders
obtained using (hv=1/80, Dt=0.0015) (dashed lines) and (hv=1/120, Dt=0.001) (solid lines).
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Figure 8. Histories of the averaged y co-ordinates (left) and x co-ordinates (right) of the cylinders obtained using
(hv=1/80, Dt=0.0015) (dashed lines) and (hv=1/120, Dt=0.001) (solid lines).

Figure 9. Histories of the flow kinetic energy obtained using (hv=1/80, Dt=0.0015) (dashed lines) and (hv=1/120,
Dt=0.001) (solid lines).

y co-ordinates and x co-ordinates of the cylinders are shown in Figure 8. The histories of the
computed flow kinetic energy are shown in Figure 9. We find a good correlation between these
results obtained from the two sets of time step and mesh size until the symmetry breakings
occur (see Figure 10) between t=4 and t=5.

In this case, a code of size 40 Mb takes about 47 s at each time step on a DEC personal
workstation 500au for the coarse mesh (hv=1/80 and Dt=0.0015). For the fine mesh
(hv=1/120 and Dt=0.001), a code of size 81 Mb takes about 99 s at each time step on the
same DEC workstation. Remark 6.3 still holds.

Remark 6.4
We observe that if the mesh size and the time step are modified by a factor of 1.5 there is no
drastic change in the solutions concerning the settling of the cylinders, at least for the average
quantities shown in Figures 7–9. One has to realize that many bifurcation phenomena are
taking place when particles get close (kissing) and then separate (tumbling); the individual
behavior seems to be of the chaotic type, not surprising after all for a 200-body problem.

6.3. A 1008 particles case

The third test problem that we consider concerns the simulation of the motion of 1008
sedimenting cylinders in the closed channel V= (0, 2)× (0, 4). The diameter d of the cylinders
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is 0.0625 and the position of the cylinders at time t=0 is shown in Figure 11. The solid
fraction in this test case is 38.66%. Initial velocity and angular velocity of the cylinders are
Vp,i

0 =0, vp,i
0 =0 for i=1, . . . , 1008. The density of the fluid is rf=1.0 and the density of

the cylinders is rs=1.01. The viscosity of the fluid is nf=0.01. The initial condition for the
fluid flow is u0=0 and g0(t)=0, Öt]0. The time step is Dt=0.001. The mesh size for the
velocity field is hv=1/256 (there are 525835 nodes). The mesh size for pressure is hp=1/128
(131841 nodes). In this test case, where many particles move around, a fine mesh is required
essentially everywhere. We have chosen a=1 and b=0 in the Marchuk–Yanenko scheme.
The number of iterations for the divergence-free projection problem varies from 12 to 14, the
number of iterations for the linearized advection–diffusion problem is five, and the one for the
rigid body motion projection is about seven. Those numbers of iterations are almost indepen-
dent of the mesh size and of the number of particles. The evolution of the 1008 cylinders

Figure 10. Sedimentation of 200 circular particles: t=4, obtained using (hv=1/80, Dt=0.0015) (top) and (hv=1/120,
Dt=0.001) (bottom).
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Figure 11. Sedimentation of 1008 circular particles: t=0, 1 (left to right).

Figure 12. Sedimentation of 1008 circular particles: t=2, 3 (left to right).
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sedimenting in the closed channel is shown in Figures 11–15. The maximal particle Reynolds
number in the entire evolution is 17.44. The slightly wavy shape of the interface observed at
t=1 in Figure 11, is typical of the onset of a Rayleigh–Taylor instability. When t is between
1 and 2, two small eddies are forming close to the left wall and the right wall and some
particles are pulling down fast by these two eddies. Then other two stronger eddies are forming
at the lower center of the channel for t between 2 and 4; they push some particles almost to
the top wall of the channel. The above figures clearly show a fingering phenomenon, followed
by a symmetry breaking. At the end all particles are settled at the bottom of the channel.

6.4. A three-dimensional case with two identical spherical particles

The fourth test problem considered here concerns the simulation of the motion of two
sedimenting balls in a rectangular cylinder. A two-dimensional analog of this test case problem
has been (successfully) investigated in [30] using similar techniques. The initial computational
domain is V= (0, 1)× (0, 1)× (−1, 1.5), then it moves with the center of the lower ball. The
diameter d of the two balls is 1/6 and the position of the balls at time t=0 is shown in Figure
16. The initial velocity and angular velocity of the balls are zero. The density of the fluid is
rf=1.0 and the density of the balls is rs=1.04. The viscosity of the fluid is nf=0.01. The
initial condition for the fluid flow is u0=0 The mesh size for the velocity field is hv=1/60
(561871 nodes). The mesh size for pressure is hp=1/30 (73036 nodes). The time step is
Dt=0.001. The simulation takes about 80 s per time step on a DEC personal workstation
500au. The maximal particle Reynolds number in the entire evolution is 47.57. In Figures
16–18 (we have followed these two balls to draw those figure), we can see the fundamental

Figure 13. Sedimentation of 1008 circular particles: t=4, 5 (left to right).
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Figure 14. Sedimentation of 1008 circular particles: t=6, 10 (left to right).

Figure 15. Sedimentation of 1008 circular particles: t=20, 48 (left to right).
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Figure 16. Particle position at t=0, 1 (left to right).

Figure 17. Particle position at t=1.149, 1.169 (left to right).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1043–1066 (1999)



R. GLOWINSKI ET AL.1064

Figure 18. Particle position at t=1.5, 2 (left to right).

features of the two (initially close) sedimenting balls, i.e. drafting, kissing and tumbling [31].
We observe that a symmetry breaking occurs before the kissing; with a smaller Re, this
symmetry breaking would occur after the kissing. Using smaller h and Dt brings essentially the
same results.

7. CONCLUSION

We have presented in this article a distributed Lagrange multiplier-based fictitious domain
method for the simulation of flow with moving boundaries. Compared with the one [32]
discussed earlier it allows the simulation of fairly complicated flow phenomena, such as
particulate flow, including sedimentation. Actually, some preliminary experiments have
shown the potential of this method for the direct simulation of fluidization, which is in
some sense the inverse phenomenon of sedimentation; the results already obtained look
promising. Other goals include: three-dimensional particulate flow with a large number of
particles of different sizes and shapes, particulate flow for viscoelastic liquids such as Oldroyd
B, etc.
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